

Input Data

R.D. Barree
Barree & Associates LLC

In This Session ...

- Discuss input data required for 3D frac models
- Introduce the complete stress equation as implemented in GOHFER
- Break apart the elements of the stress equation
 - Poisson's Ratio and Young's Modulus
 - Net Effective Stress
 - Pore Pressure, Overburden Pressure, Biot's Constant
 - External Stress Boundary Conditions
- Height Containment Mechanisms other than Stress Contrast

Types of Input Data

- Control of Stress Profile
 - Poisson's Ratio
 - Young's Modulus
 - Stress and Strain Offsets
 - Pore Pressure
 - Biot's Alpha
 - Depth
 - OB Gradient

- Control of Fracture Growth
 - Stress Profile
 - Process Zone Stress

Other input data relating to fluid loss and efficiency, fluid and solid transport, and post frac production will be discussed later.

Definition of Stress and Pressure

- Stress and pressure are both terms for the magnitude of an applied force per unit area (lb_f/in², Pa, bar, atm, kg/m², etc.)
- the term "pressure" is applied to fluids
 - Pressure acts equally in all directions
 - Pressure has magnitude only
- The term "stress" is applied to solids
 - Stress has direction and magnitude
 - Stress is considered to be a vector or tensor quantity
 - Stress is not isotropic
 - Positive stresses lead to compression and negative stresses to extension

In Situ Earth Stresses

- Stresses caused by overburden weight
 - Vertical to horizontal transform through confined compaction
- Stresses caused by tectonic movements
- Stresses caused by creep-flow and plasticity
- Effects of pore pressure and its variation
- Stresses caused by diagenesis

Obtain elastic properties from core and logs Infer all other influences from field measurements

GOHFER's Complete Stress Equation

$$P_{c} = \frac{v}{(1-v)} [P_{ob} - \alpha_{v} P_{p}] + \alpha_{h} P_{p} + \varepsilon_{x} E + \sigma_{t}$$

- $P_c = closure pressure, psi$
- v = Poisson's Ratio
- P_{ob} = Overburden Pressure
- $\alpha_v = \text{vertical Biot's}$ poroelastic constant
- $\alpha_h = \text{horizontal Biot's}$ poroelastic constant

- $P_p = Pore Pressure$
- $\varepsilon_{\rm x}$ = regional horizontal strain, microstrains
- E = Young's Modulus, million psi
- σ_t = regional horizontal tectonic stress

Uniaxial Strain: Deformation in One Direction

Horizontal stress required to assure no lateral strain

$$\sigma_{H} = (P_{OB} - \alpha P_{P}) \frac{\upsilon}{(1 - \upsilon)}$$

Overburden Pressure

- P_{ob} is the externally applied load
- In GOHFER expressed by:
 - $-D_{tv}\gamma_{ob}$
 - Where
 - γ_{ob} is the overburden stress gradient, psi/ft
 - D_{tv} is the true vertical depth, feet

Net Stress Causes Rock Deformation

- Total Stress Remains Constant
- As pore pressure declines, net stress increases

•
$$\sigma_n = P_{ob} - \alpha P_p$$

Definition of Strain

$$Strain = \frac{Change in Length}{Original Length}$$

$$\varepsilon = \frac{L_2 - L_1}{L_1} = \frac{\Delta L}{L}$$

Stress/Strain Relationship

Stress/Strain Slope – Rock Stiffness

Young's Modulus:

$$E=\sigma/\epsilon$$

Higher Slope
 Indicates
 Stiffer
 Material

Young's Modulus is Not a Constant <u>& Deformation is Non-Linear</u>

Stress

Strain

Core Alteration During Coring and Handling

- Removal of overburden stress while coring:
 - Core disking and fracturing
- Removal of confining stress during core recovery:
 - Expulsion of trapped pore pressure
 - Generation of microfractures
 - Anelastic strain (differential expansion) of core
- Thermal contraction
- Dessication and oxidation
- Stress cycling and non-representative stress states
- Improper restoration of saturation

Modulus Depends on Conditions of Measurement

Definition of Poisson's Ratio

Poisson's Ratio = $v = \varepsilon_x / \varepsilon_z$

0 < v < 0.5

Measurement of Dynamic and Static Elastic Properties

- Dynamic modulus must be converted to static modulus
 - Static Modulus: large amplitude at low (zero) frequency (load frame tests)
 - Dynamic Modulus: small amplitude at high frequency (acoustic waves)
- Which stress state best defines the right conditions to measure modulus?
 - Results affected by strain rate, saturations, temperature, frequency, history, time, and many other factors

Modeling of P_p: Pore Pressure

Incorrect
Pressure
Distribution

Incorrect total
stress profile

Incorrect
Fracture
Geometry

- Usual 'apparent' gradient gives pressure only at datum
- In the GOHFER total stress equation
 - expressed in more complex form
 - reflects change in pressure (and stress) across depth interval to be stimulated

$$P_{p} = \left(D_{tv}\gamma_{p} + P_{off}\right)$$

 D_{tv} = true vertical depth (feet) γ_p = pore fluid gradient, psi/ft P_{off} = pore pressure offset, psi

Variable Pore Pressure Offset Geo Pressured Environment

Variable Pore Pressure Offset Gravity-Capillary Pressure System

© 2009

Effect of Pore Pressure on Stress

- Pore fluid supports part of the total stress
- Pore pressure depletion increases net stress and leads to compaction
- Pore pressure depletion decreases total (fracture closure) stress
- Fractures tend to grow into region of lowest pore pressure

Pore Pressure Variations Induce Closure Stress Contrasts

Closure Pressure (P_c) is affected by

Pore Pressure (P_p): $P_c = \frac{\upsilon}{(1-\upsilon)} (P_{ob} - \alpha P_p) + P_p + \sigma_x$

Reservoir Pressure, psi

Closure Stress Change Related to <u>Pressure Depletion and PR</u>

Reservoir Pressure Gradients

- Fractures grow into areas of lower closure stress or pressure
 - vertical fracs grow upward in uniform rock
- Lateral pressure gradients have the same effect as vertical gradients
- Drilling and fracing in a pressure gradient can lead to asymmetric fracture growth

What We Have So Far

So far we have transformed this:

$$[P_{ob} - \alpha_{v} P_{p}] + \alpha_{h} P_{p}$$

to

$$\left[D_{tv}\gamma_{ob} - \alpha_v \left(D_{tv}\gamma_p + P_{off}\right)\right] + \alpha_h \left(D_{tv}\gamma_p + P_{off}\right)$$

So what about that α ??

Biot's Poroelastic Constant

- Internal fluid pressure is not transmitted perfectly to the rock matrix
- Correction factor applied
 - Biot's poroelastic constant (α)
- So net effective stress is:

$$-\sigma_n = P_{ob} - \alpha P_p$$

- Which should make one part of the GOHFER equation recognizable as the net effective stress.

Biot's Constant & Its Effects on Stress

- Biot's poroelastic constant (α) is <u>the efficiency with</u> which internal pore pressure offsets the externally applied vertical total stress
- as α declines, net (intergranular) stress increases and pore pressure variations have less impact on net stress

Possible Correlations for α

Assumptions in Stress Calculations

$$P_{c} = \frac{v}{(1-v)} [P_{ob} - \alpha_{v} P_{p}] + \alpha_{h} P_{p} + \varepsilon_{x} E + \sigma_{t}$$

To calculate P_c assumptions must obviously be made about α – possibilities include:

- $\alpha_v = \alpha_h$ f(PHIE), constant strain offset
- $\alpha_v = \alpha_h$ f(PHIE), constant stress offset
- α_v variable, α_h =1, strain offset
- $\alpha_v = \alpha_h = 1$, strain offset

Resulting Stress Profiles

Drained vs. Undrained Poisson's Ratio and Young's Modulus in Coals

Drained Test:

- Pore fluid is free to escape or compress
- Pore pressure constant with compaction
- Cleats support load and may shear
- v = 0.35

Undrained Test:

- Pore fluid is trapped and incompressible
- Pore pressure increases with compaction
- Pore fluid supports total stress
- v = 0.5

Triaxial Loading: <u>Defined by Three Principal Stresses</u>

Oriented Anisotropic Core Data: What does it mean?

Fractures, Laminations, and Sample Scale Effects in Shale

Homogeneity and Anisotropy: What are we measuring?

2.3. Rock description

Preliminary studies showed that this rock is a very homogeneous, beige-colored, muddy limestone.

What Are the Mechanical Properties of This?

More Complex Realistic In-Situ Stress States

In-Situ Stress Field Controls Fracture Orientation

 Fracture orientation determined by relationship of principal stresses

- Stress distribution controls fracture orientation, height containment, treating pressure magnitude, and change in treating pressure during
- Orientation of induced fractures controlled primarily by the stress difference between the 3 principal stresses
- the major displacement (opening of fracture width) occurs in the direction of the minimum principal stress

Barree & Associates

External Stress Boundary Conditions

$$P_{c} = \frac{v}{(1-v)} \left[P_{ob} - \alpha_{v} P_{p} \right] + \alpha_{h} P_{p} + \varepsilon_{x} E + \sigma_{t}$$

Handling Tectonic Stress

Two ways

- a constant regional stress can be added to one (or both) horizontal stresses over some vertical extent
- 2. assume some regional strain which then generates a different stress in each layer, according to its stiffness
 - allows component of stress proportional to Young's Modulus
 - shown to work effectively in many field cases

Regional Strain <u>Produces Tectonic Stress</u>

Tension

Regional Strain

Compression

Estimated Stresses Depend on the Model Used

Stress Adjustments Through Tectonic Strain

Uniaxial Strain Adjusted Stress

Added 200 microstrains regional strain to stress calcs to match observed closure stress of 4500 psi at 6050'

GOHFER's Total Stress Equation

We have now examined the various parts of the total stress equation:

$$P_{c} = \frac{v}{(1-v)} \left[D_{tv} \gamma_{ob} - \alpha_{v} \left(D_{tv} \gamma_{p} + P_{off} \right) \right] + \alpha_{h} \left(D_{tv} \gamma_{p} + P_{off} \right) + \varepsilon_{x} E + \sigma_{t}$$

Other Height Containment Mechanisms

- Inelastic energy dissipation
 - shear failure
 - bed slip
 - natural fractures
 - plastic deformation

Need to re-examine classical LEFM models (Linear Elastic Fracture Mechanics)

Plastic Deformation of Rocks <u>Under Confining Stress</u>

Original Sample

4000 psi Confining Stress 6500 psi Confining Stress

Rocks Behave Like Plastic Materials

Are All Shales the Same? Brittle vs. Ductile Behavior

Barnett Shale

Upper Cretaceous WCSB

Definition of Brittleness Based on E (YMS C) and v (PR C)

Proposed Fracture Stimulation Choices Based on Brittleness

				Fracture Width	n Pr	oppant	Fluid	1	Propp	ant	
Brittleness	Fluid System	Fracture Geometry		Closure Profile	e Co	Concentration		Volume		Volume	
70%	Slick Water			16		Low	H	igh	Lov	N	
60%	Slick Water			X		-				oxdot	
50%	Hybrid	_		11		3 &	LS	$\overline{\Delta}$			
40%	Linear										
30%	Foam								\Box	_	
20%	X-Linked										
10%	X-Linked					High	L	OW	Hig	h	

Definition of Brittle-Ductile Failure

Quasi-plastic or strain-hardening

Brittle failure or strain-softening

Ternary Diagram of the mineralogy of four Barnett Shale Wells

Ternary Diagram of the mineralogy of all Shales in the North America Database

Plasticity and Creep: Effects on Stress Estimates

- Apparent Poisson's Ratio approaches 0.5
- Horizontal stresses become nearly equal
- Horizontal stress can almost equal vertical stress
- Tendency for strong height containment in clay-rich, plastic sediments
- Possible blunting or fracture truncation

Lithologies Susceptible to Plastic Creep

- Coals
- Carbonates (at great depth)
- Gumbo Shales
- Evaporites
 - -Halite
 - —Anhydrite

Confirming Input Data Accuracy

- Need direct mapping of fracture growth
- Most data suggests that containment is much better than expected
- The stress model used is at least as important as the input data
- Elastic properties derived from sonic logs may not be the most useful

- Surrogate properties may give more predictive results
- Poroelasticity is important and may give a time and permeability dependence on apparent stress
- Assuming α_v (PHIE) and α_h =1 gives the largest stress contrast in most systems
- Often other containment mechanisms must be invoked (shear-slip and layered media)

Barree & Associates